Application of probability theory in risk analysis for optimal business decision making

Main Article Content

Arnah Ritonga
Amanda Amelia Putri
Ananda Putri Aulia Daulay
Najwa Delvyra
Endi Saputra

Abstract

This study discusses the application of probability theory in risk analysis to support more optimal business decision making amidst market uncertainty. The methods used include probability distribution, Bayes' Theorem, and Monte Carlo Simulation to identify and measure risks in various business scenarios, including market volatility, investment decisions, and profit projections. This approach allows quantitative modeling of uncertainty, so that risks can be evaluated more accurately and measurably. The results show that risk analysis based on probability theory provides deeper insight into possible business outcomes, enables more effective risk mitigation, and improves the accuracy of strategies in dealing with market changes. Based on the analysis results, it can be concluded that the application of probability theory plays a significant role in managing business risks and uncertainties. Monte Carlo simulation, Bayes' Theorem, and probability distribution analysis allow companies to make more accurate predictions regarding future events, leading to more data-driven decision making. In addition, a probabilistic approach enables businesses to clearly identify patterns of risk and opportunity, optimize resource management, and enhance operational, marketing, and investment planning strategies. However, challenges remain in its implementation, especially regarding the understanding of probability concepts and the need for accurate data. Therefore, stronger integration between probability theory and analytical technology is essential to optimize risk management strategies. With the right approach, probability theory becomes a valuable tool for supporting sustainable and competitive business growth in a dynamic market environment

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

Aji, L. J., Sutrisno, D., & Rijal, S. (2024). Statistika untuk Ilmu Sosial: Data dalam Kajian Kepemilikan Interaksi Manusia. Kebumen: Mutiara Intelektual Indonesia Press.

Alawdin, D. A., Kamila, R. R., Khasanu, M. W., Hidayat, R. N., & Kusumasari, I. R. (2024). Analisis teori pengambilan keputusan berbasis risiko dalam manajemen proyek. Jurnal Akuntansi, Manajemen, dan Perencanaan Kebijakan, 2(2), 1-13. https://doi.org/10.47134/jampk.v2i2.539

Arsyadona, Manik, D. T. S., Mahyu, F. R. O., Ananda, W., & Hasibuan, S. R. (2025). Analisis risiko: langkah strategis untuk mencegah kerugian dan meningkatkan profitabilitas suatu perusahaan (Studi kasus: perkembangan pariwisata di kota Medan). Jurnal Sains Student Research, 3(1), 264-277. https://doi.org/10.61722/jssr.v3i1.3473

Hasugian, I. A., Muhyi, K., & Firlidany, N. (2022). Simulasi Monte Carlo dalam memprediksi jumlah pengiriman dan total pendapatan. Buletin Utama Teknik, 17(2), 133-138. Retrieved from https://jurnal.uisu.ac.id/index.php/but/article/view/4952/3556

Marcelina, D., Putri, I. P., Yulianti, E., & Heryati, A. (2025). Analisis tren penjualan dan prediksi produk CV. Sentosa menggunakan regresi linier. JSAI: Journal Scientific and Applied Informatics, 8(1), 122-130.

Nazara, D. S., Le, M., & Oktoriza, L. A. (2024). Menciptakan Peluang: Berani Mengambil Risiko di Dunia Bisnis. Padang: Takaza Innovatix Labs.

Ningsih, C., Sukemi, Syamsuddin, A. R., & Gustiar, F. (2024). Statistik: Panduan Praktis untuk Analisis Data. Medan: PT Media Penerbit Indonesia (MPI).

Putri, I. F., Emalia, S., & Iskandar, A. (2024). Analisa perbandingan metode teorema bayes dan case based reasoning dalam mendeteksi penyakit polymyalgia rheumatica. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(4), 2244-2252. https://doi.org/10.30865/klik.v4i4.1568

Sari, A. B., Masviansyah, R., Hidayat, R. N., & Kusumasari, I. R. (2024). Analisis teori pengambilan keputusan dalam konteks manajemen risiko perusahaan. Triwikrama: Jurnal Ilmu Sosial, 5(3). https://doi.org/10.6578/triwikrama.v5i3.6364

Sianturi, R. (2023). Penggunaan teorema binomial dalam menentukan peluang suatu kejadian. Journal on Education, 5(14), 12922-12936. https://doi.org/10.31004/joe.v5i3.1763

Suriyadi, & Azmi, F. (2022). Pengembangan manajemen risiko pada instansi pendidikan. Jurnal Ilmiah Terapan, 16(3), 543-553. https://doi.org/10.46576/wdw.v16i3.2246

Toruan, J. H. L. (2022). Konsep Dasar Teori Peluang. Tasikmalaya: Perkumpulan Rumah Cemerlang Indonesia (PRCI).

Yoewono, J. O., & Prasetyo, A. H. (2022). Rancangan dan proses manajemen risiko pada PT Surya Selaras Cita. Jurnal Muara Ilmu Ekonomi dan Bisnis, 6(1), 56-72. https://doi.org/10.24912/jmieb.v6i1.12207

Yuliah, & Triana, L. (2021). Pengukuran value at risk pada aset perusahaan dengan simulasi Monte Carlo. Jurnal Valuasi: Jurnal Ilmiah